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Abstract

The Global Transfer Direct Transfer (GTDT) method is a two-step transmission path analysis method. It
is used to analyze the signal transmission among subsystems from a general N-dimensional linear network,
representing the physical model under study. In the first step, the Global Transfer Functions (GTFs) are
measured and the Direct Transfer Functions (DTFs) are calculated from them. In the second step, the
signal vector is measured for the network running under the desired operational conditions. It is then
possible to reconstruct the signal in any subsystem from the contributions of all other subsystems plus its
own external excitation. This is done by means of the previously calculated DTFs.

This paper is intended to clarify how the GTDT method works. This is done by means of an analytic
study of the bending wave transmission between three points in a finite simply supported elastic beam. This
problem constitutes a particular four-dimensional example of the general N-dimensional network.
Concerning the first step of the method, special emphasis is given to the relationship among the DTFs
and the GTFs, as well as to elucidate the role of the DTF matrix as a connectivity matrix. As for the
second step of the method, the particular case of a correlated force vector acting on the beam is addressed.
It is shown how the signal at any subsystem can be reconstructed from the signals at all the
other subsystems. In practical implementations this allows to identify problematic subsystems in
order to perform appropriate design modifications and avoids the necessity of having to measure
operational forces.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the past three decades, several methods have been developed to deal with the problem of
analyzing noise and vibration transmission paths in physical systems. These methods are
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generically known as Transmission Path Analysis (TPA) methods. The physical systems under
study can often be schematically modelled by a linear network of N connected subsystems. The
various TPA methods then analyze different types of relationships among these subsystems:
relations among the forces acting on them and the subsystem signals, relations among the signals
themselves, paths followed by the signals from one subsystem to another, etc.

A general distinction can be made between the so-called one-step methods and the two-step
methods. The former extract information from the measured operational forces and signals. See
for instance the Multiple Input Single/Multiple Output (MISO–MIMO) methods (Refs. [1–5] and
Ref. [6] for comparison). The latter measure transfer functions in a first step, with the network
stationary, and obtain the final results from a second set of measurements with the network
running under the desired operational conditions. Examples of two-step methods are the Global
Transfer Direct Transfer (GTDT) method [7] or the Force Transfer Functions (FTF) methods
(e.g., Refs. [7–9]).

This paper focuses on some features of the GTDT method. This method was developed in
Ref. [7] to deal with the case of a linear N-dimensional network under steady operational
conditions and then extended to non-steady cases [10] showing a large resemblance with the
Markov chains theory when used to describe phonon random walks in closed spaces [11]. A
Statistical Energy Analysis (SEA) implementation of the method was also carried out [12] and a
recent easy-to-handle matrix formulation has been carried out. The transmission path analysis
approach in Ref. [12] can also be found in Ref. [13]. It is worthwhile to mention that similar ideas
to those presented by the GTDT method have been independently developed in different fields
such as neurology [14] or economy [15].

One of the cornerstones of the GTDT method, found in its first step, concerns the relationship
between the Global Transfer Functions (GTFs) and the Direct Transfer Functions (DTFs). The
former correspond to the common concept of a measurable transfer function, i.e., they give
the quotient between the signal at a subsystem j and the signal, or the force, at a subsystem i when
i is excited. The latter represent, roughly speaking, the quotient between the signals at j and i when
i is excited and all the other subsystems in the network remain somehow blocked. Consequently,
the DTFs cannot be measured and have to be calculated from the GTFs. It is one of the purposes
of this paper to help clarify the differences between both types of transfer functions and the
calculations involved in obtaining the DTFs. Another objective is to show that the direct transfer
matrix (built from all DTFs among subsystems) plays the role of a connectivity matrix, i.e., the
elements corresponding to straight-linked subsystems are non-zero while subsystems linked
through a third one have a zero DTF.

The other cornerstone of the GTDT method is found in its second step. It concerns the
operational signal reconstruction in any subsystem by means of the DTFs and the operational
signals in all the other network subsystems. This allows one to identify problematic subsystems
and gives a tool to predict how a design modification in one subsystem can diminish the signal of
any other one (this can obviously be done if it is possible to estimate the new DTFs and/or the
subsystem signals reduction which is often the case in many practical situations). The method also
avoids the necessity of having to measure operational forces. In this paper, attention will be
focused on how the signal reconstruction is to be carried out for the particular case of a correlated
force vector acting on the system. The meaning of the so-called external signal will also
be addressed.
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The above concepts will be dealt with by means of the analytic study of the bending wave
transmission between three points in a finite simply supported elastic beam. This example
corresponds to a particular four-dimensional case of the general N-dimensional one. The paper is
thus focused on some theoretical features of the method. Consequently, no mention will be made,
for instance, of how the various subsystems have to be selected in practical cases. The different
ways of how measurements are to be made for the correlated and energetic cases as well as the
benefits that can be obtained from subsystem design modifications are not addressed here. These
subjects will be presented in subsequent work on industrial applications of the GTDT method.

Concerning the terminology used throughout the paper, it has to be mentioned that the term
subsystem has been identified with a single degree of freedom (d.o.f). Taking into account that in
industrial applications one single d.o.f will often be intended to represent the behaviour of an
entire physical entity (e.g., r.m.s. normal velocity of a plate under the SEA hypothesis, one-point
normal velocity of a plate vibrating in an eigenmode or in a simple combination of eigenmodes), it
has become quite customary to identify the d.o.f itself with the physical entity it represents
(usually referred to as a subsystem, e.g., in SEA). Under these assumptions, it is not contradictory
to use the term subsystem to designate the d.o.f. Although this is not the case for the example
presented here because only one physical entity will be considered (the beam) while 4 d.o.f. will be
taken into account, the term subsystem to designate each d.o.f has been kept to follow the
terminology used in related work on the GTDT method (see Refs. [7,10,12]). On the other hand
note that transfer functions only make full sense when defined between d.o.f and not between
physical entities.

The paper is organized as follows. In Section 2 a brief overview of the GTDT method for an
N-dimensional linear network is presented. Section 3 states the analytical problem of bending
wave transmission in a simply supported elastic beam within the GTDT framework. Section 4
calculates the GTFs among all subsystems. In Section 5 the DTFs are calculated from the
previously obtained GTFs and the role of the DTF matrix as a connectivity matrix is shown. In
Section 6, the signal reconstruction at any subsystem by means of the signals at the remaining
ones is carried out. Conclusions are finally given in Section 7.

2. The GTDT method: a brief overview

2.1. Motivation of the method

Consider, as an example, the vibration transmission from the bogie of a railway carriage to the
noise at its interior. A network of subsystems modelling the carriage behaviour could be built, for
instance, from the three axes accelerations (displacements or velocities) at the bogie connection
points, the normal accelerations of the carriage inner panels and the acoustic pressure at a control
microphone inside the carriage. Suppose a simplified and idealized case with only two bogie
connection points where accelerations in just one axis remain of interest, four interior panels
(floor, two laterals and roof) with their corresponding normal accelerations and the acoustic
pressure at one microphone. That makes a total of 7 subsystems that form the discrete system
representing the continuous physical one (railway carriage). The seven-dimensional network in
Fig. 1 can schematically represent the connectivity among these subsystems. As seen, it is assumed
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that there is no airborne noise paths or links from the connection points C1 and C2 to the interior
microphone M, i.e. an impact hammer at C1 only generates sound at M as long as it induces
vibrations on subsystems F, L1, L2 and R that are directly connected to M.

Consider what happens, for instance, if the force–acoustic pressure and the acceleration–
acoustic pressure transfer functions from L1 to M in Fig. 1 are to be measured. In the first case, an
impedance hammer can be used to excite L1 and measure the force, while at the same time a
microphone measures the acoustic pressure at M. The force–acoustic pressure transfer function is
then obtained, as usual, by dividing the signal at M by the force at L1 in the frequency domain (no
comments will be made here of the statistics involved in the measurement process). However,
notice that the acoustic pressure measured at M is not only due to the noise generated by the
vibration of L1 induced by the hammer impact on it, but to the vibration of all the other
subsystems of the network directly connected to M, i.e., R, L2 and F. These subsystems are also
linked to L1 and thus will be excited by the impact on it. In turn, the vibrations of these
subsystems will actually depend on the response of the whole network (C1, C2, F, L1, L2, R, M)
to the impact at L1. Since each subsystem has been independently excited, the superposition
principle can be used to obtain the subsystem force contributions to the acoustic pressure at M in
the second step of the method. However, these contributions do not represent independent
transmission paths or links since the signal at M after each excitation is due to the response of the
entire network. The situation gets even more intricate if an acceleration–acoustic pressure transfer
function is used. In this case an accelerometer can be placed at L1 and a hammer used to excite it.
The transfer function will be again obtained by dividing the signal at M, which is due to the
vibrations of all the coupled subsystems, by the acceleration at L1, which is generated from the
combination of the impact at L1 plus the response from all the other subsystems to it. Moreover,
given that it is not feasible to cause an acceleration at L1 without producing an acceleration at any
other subsystem (the same remaining true if the acceleration is generated at any other subsystem
C1, C2, F, L1, L2, R), it is impossible to obtain a set of independent measured transfer functions
to which the superposition principle can be applied. Therefore, in the second step of the method it
would not be possible to readily obtain the contributions from the subsystem overall accelerations
to the acoustic pressure at M in terms of the measured transfer functions. Note, however, that it is
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possible to apply the superposition principle to these transfer functions if only the fractions of the
accelerations due to the external excitations at each subsystem are considered.

These types of transfer functions (force–acoustic pressure, acceleration–acoustic pressure,
force–acceleration and acceleration–acceleration in the above example), which are the only ones
that can be measured without modifying the system under study, are termed Global Transfer
Functions (GTFs) in the GTDT method of transmission paths analysis. The name comes from the
fact that the signal is transmitted from the excited subsystem to the receiver subsystem taking into
account any link between them. The set of all these paths or links is termed a global transmission
path in the GTDT framework

In view of the above considerations, it would be interesting to obtain the transfer function
between L1 and M when the signal at the remaining subsystems is zero, i.e., the signal is only
transmitted from L1 to M through the direct path or link connecting them while the other
subsystems remain somehow blocked. These ‘‘ideal’’ transfer functions are termed Direct
Transfer Functions (DTFs) in the GTDT method and are not measurable quantities. However,
the DTFs can be calculated once the GTFs have been measured. The term direct comes from the
fact that in this case the signal is only transmitted from the excited subsystem to the receiver
following the direct link between them. The advantages of using the DTFs are two-fold. First,
they constitute an independent set of transfer functions where the superposition principle
in the second step of the method can be applied, if signal–signal transfer functions are used
for the signal reconstruction at any subsystem. Second, they allow one to get individual
transmission paths among subsystems by obtaining independent links among them. This becomes
especially appealing, for instance, when design modifications are to be performed and it is
necessary to know how changes in one subsystem may affect another one without considering the
whole system.

On the other hand, notice that in the railway carriage example, the DTF from L1 to M will be
non-zero but the DTFs from C1 to M will be zero, as there is no direct link between C1 and M
(see Fig. 1). The same holds for the DTF between C2 and M.

The second step of the GTDT method consists in using the DTFs to reconstruct the operational
signal at any subsystem from the external signal acting on it plus the operational signals at the
remaining subsystems. On one hand this avoids the necessity of having to measure operational
forces. Moreover, these forces cannot always be controlled in order to reduce their effect on a
desired subsystem. In the railway carriage example, for instance, forces of very different nature
will generate noise inside the carriage. Some of these forces will be due to the rail/wheel
interaction, to the rail discontinuities, to the aerodynamic loading or to the engine and auxiliary
equipment connections to the carriage. Although the influence of some of them on the noise at M
can sometimes be reduced this will not be generally the case. However, if the signal at M is known
in terms of the direct signal contributions of subsystems F, L1, L2 and R, it is possible to estimate,
for instance, how a design modification at L2 (e.g., a change in thickness or in rigidity, a double
panel) will increase or diminish its vibration and its new effect on the noise at M. That is to say,
once the new DTF between L2 and M is obtained, it is possible to see how the modification on L2
influences the noise measured at M, without taking into consideration the subsystems that are not
directly linked to them. In fact, this is the final motivation of the GTDT method, i.e., to detect
problematical subsystems and see how design modifications may help to reduce noise at a
given location.
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2.2. Relationship among DTFs and GTFs: the general case

In what follows a more rigorous definition of a GTF and a DTF in a general N-dimensional network
will be given. However, the reader is referred to Ref. [7] for further details, comments and discussions.
Again, no mention will be made of the statistical process involved in the GTFs measurements.

The external force vector acting on the N-dimensional network will be denoted by
#f extðoÞ ¼ ð #f ext

1 ðoÞ; #f ext
2 ðoÞ;?; #f ext

N ðoÞÞTwhile #sðoÞ ¼ ð#s1ðoÞ; #s2ðoÞ;?; #sNðoÞÞ
T will denote the cor-

responding measured signal vector. Each component, #f ext
i ðoÞ; of the force vector can represent

different physical quantities such as forces or moments. The same remains valid for the signal
vector where #siðoÞ can represent quantities such as acceleration, velocity, displacement, acoustic
pressure, etc.

The GTF between two subsystems i and j; #T G
ij ðoÞ; is defined as the quotient between the signal

at j; #sjðoÞ; and the signal at i; #siðoÞ; when there is only one non-zero and independent external
excitation, #f ext

i ðoÞ; applied to i which has been transmitted to j via a global path:

#T G
ij ðoÞ ¼

#sjðoÞ
#siðoÞ

with #f extðoÞ ¼ ð0;?; 0; #f ext
i ðoÞ; 0;?; 0ÞT ð1Þ

As mentioned, (1) coincides with the usual definition of a transfer function. Note that for a
signal–signal transfer function with the same physical magnitude in both, the numerator and
denominator, it follows that #T G

ii ðoÞ ¼ 1 8i ¼ 1?N: On the other hand if #siðoÞ is replaced by
#f ext
i ðoÞ a force–signal transfer function is obtained.
The DTF, #T D

ij ðoÞ; from subsystems i to j; with iaj; is defined as the quotient between the signal
at j; #sjðoÞ; and the signal at i; #siðoÞ; when a non-zero and independent external excitation, #f ext

i ðoÞ;
applied to i that has been transmitted to j via a direct path, i.e., all other signals #skðoÞ; with kai; j
remain zero:

#TD
ij ðoÞ ¼

#sjðoÞ
#siðoÞ

with #skðoÞ ¼ 0 8kai; j: ð2Þ

As already mentioned, the DTF between two points gives the quotient of their signals when all
the other subsystems in the network remain somehow blocked, i.e. their signals are zero.

Finally, the DTF, TD
ii ðoÞ; from a subsystem i to itself, is defined as the quotient between the

signal at i; #siðoÞ; when there is only one non-zero and independent external excitation #f ext
i ðoÞ

applied to i; and all the other signals #skðoÞ with kai remain zero, and the signal at i; #s ext
i ðoÞ; when

the same external excitation #f ext
i ðoÞ is applied to i and there is no restriction on the other

subsystem signals (i.e., the signal can be transmitted back to i via a global path):

#TD
ii ðoÞ ¼

#s0iðoÞ
#sext
i ðoÞ

; ð3aÞ

where

#s0iðoÞ ¼ #siðoÞ if #sðoÞ ¼ ð0;?; 0; #siðoÞ; 0;?; 0ÞT ð3bÞ

and #s ext
i ðoÞ is the ith component of #sðoÞ when there is no restriction of nullity on all other

components jai; i.e.

#s ext
i ðoÞ ¼ #siðoÞ signal at i if

#f extðoÞ ¼ ð0;?; 0; #f ext
i ðoÞ; 0;?; 0ÞT;

#sðoÞ ¼ ð#s1ðoÞ; #s2ðoÞ;?; #siðoÞ;?; #sNðoÞÞ
T:

(
ð3cÞ
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The notation #s ext
i ðoÞ accounts for the fact that (3c) represents the overall signal at i that is

caused by the external excitation applied on i plus the response contributions of all other
subsystems j; with jai; to this excitation. Consequently, #s0iðoÞ ¼ #TD

ii ðoÞ#s
ext

i ðoÞ represents the
fraction of #s ext

i ðoÞ that is only due to the external excitation on i: As opposed to the signal–signal
GTFs, #TD

ii ðoÞa1: Note that neither TD
ii ðoÞ nor #s0iðoÞ nor #s ext

i ðoÞ are measurable quantities.
Applying Eq. (1) to all pairs of subsystems in the network, a global transfer matrix #TG can be

built. In the same way, from (2) and (3a) a direct transfer matrix #TD can be built, Eq. (2) giving its
off-diagonal elements and Eq. (3a) the diagonal ones. The DTFs and GTFs matrices can then be
related through the equation

#TG #TDE ¼ �KTD; ð4Þ

where #TDE ¼ dev #TD � I; being I the identity matrix and dev #TD the deviatoric part of #TD defined
as

dev #TDjij ¼ #TD
ij ðoÞð1� dijÞ; ð5Þ

where dij is the Kronecker delta. KTD is the diagonal matrix whose non-zero elements are given by
(3a)

KTDjij ¼ #TD
ij ðoÞdij : ð6Þ

Eq. (4) can be used to obtain the #TD matrix from the inverse of the #TG matrix. From (4) it
follows that

� #TDEK�1
TD ¼ ð #TGÞ�1 ð7Þ

and taking into account that

� #TDEK�1
TD ii

¼ 1=TD
ii ðoÞ;

��� ð8aÞ

� #TDEK�1
TD ij

¼ �TD
ij ðoÞ=TD

ii ðoÞ; iaj
��� ð8bÞ

it is straightforward to find #TD:

2.3. Signal reconstruction from DTFs and GTFs

In order to find the operational signal in any subsystem in terms of the external signal acting on
it and the remaining subsystem operational signals, the former has to be first obtained. This can
be done because the external signal vector, #s extðoÞ; can be calculated from measurable quantities
such as the operational signal vector #sðoÞ and the GTF matrix #TG: From equations in Ref. [7]
written in matrix form, it follows that:

#s ext ¼ ð #TGT
Þ�1#s: ð9Þ

The signal vector, #sðoÞ; is then related to #s extðoÞ and #TD by means of

#s ¼ ðdev #TDÞT#sþ KTD#sext: ð10Þ

Notice that as the deviatoric part of #TD appears in (10), #siðoÞ is expressed in terms of #sjðoÞ 8jai

and #s ext
i ðoÞ:
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In the following sections, the concepts developed above will be applied to the particular case of
bending wave transmission in a finite simply supported elastic beam.

3. Statement of the beam example

Consider the case of a simply supported Euler–Bernouilli beam of length L: The chosen
subsystems are the vertical displacements at three arbitrary points fx1;x2; x3gAO ¼ ½0;L� with
x1ox2ox3 and the angle rotated at the point x2 (see Table 1, Fig. 2a). That makes a total of 4
subsystems so that the beam problem to be dealt with corresponds to a particular example of a
four-dimensional linear network. On the other hand, the two boundary points of the beam are
denoted by @O ¼ fx ¼ 0;x ¼ Lg:

The components of the (4 4) global transfer matrix, #TG; will be first obtained and from it the
corresponding (4 4) direct transfer matrix #TD: The main result, concerning the first step of the

GTDT method, will be that unlike the GTFs #TG
14 and #TG

41; which are non-zero, the DTFs
#TD
14 ¼ #TD

41 ¼ 0, i.e., these DTFs quantify the well-known fact that no signal can be transmitted from

x1 to x3 if neither a displacement nor a rotation are allowed at x2: On the contrary, all remaining
GTFs and DTFs will be non-zero. Hence, the DTF matrix plays the role of a connectivity matrix
among subsystems. The situation is schematically shown in Fig. 2b, where the connectivity graphs
for the global and direct transfer functions associated to the beam problem are shown.

In order to first obtain the global transfer functions, #TG
ij ; the inhomogeneous differential

equations governing the bending vibrations of the beam for a point harmonic force and a point
harmonic moment excitations have to be considered. The solutions to these equations will
correspond to force–displacement and moment–displacement transfers functions (receptances in
the mechanics field), from which force–angle and moment–angle transfer functions can be easily
derived too. Although it is also possible to apply the first step of the GTDT methodology to these
types of transfer functions, signal–signal transfers functions (displacement–displacement,
displacement–angle and angle–displacement) will be used, as in the original formulation [7].
The signal–signal GTFs can be obtained by forming ratios of the various force–displacement/
angle and moment–displacement/angle GTFs. However, it has to be pointed out that this
procedure is only valid because analytic expressions are used for all the involved transfer
functions. In case of the force–displacement GTFs being obtained by means of measurements,
and thus involving a statistical process, this operation will be totally incorrect. In such a case (the
most usual one in practical applications of TPA methods) it is necessary to directly measure the
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Beam subsystems

Subsystem number Variable description Variable

1 Vertical displacement Uðx1Þ
2 Vertical displacement Uðx2Þ
3 Angle of rotation W ðx2Þ
4 Vertical displacement Uðx3Þ
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signal–signal transfer functions. On the other hand and regardless of the procedure used to obtain
the GTFs, the DTFs will be obtained from them by means of Eqs. (8a) and (8b).

With regards to the second step of the method, the main result will be that the DTFs can be used

to reconstruct the operational signal at any subsystem i; #siðoÞ 8i ¼ 1;?; 4; from the external signal
acting on i, #s ext

i ðoÞ; and the operational signals at the remaining subsystems #sjðoÞ 8jai: In order to
do so, a correlated force vector will be assumed to be acting on the beam. The corresponding
signal vector will then be calculated by means of the cross-receptance matrix. These two vectors
(force and signal), are to be viewed respectively as measured quantities in practical applications of
the Force Transfer Functions (FTF) and GTDT methods. If the signal in any subsystem is
reconstructed in terms of the forces acting on the system, #fextðoÞ; and by means of the global
receptance matrix, the procedure will correspond to the FTF method. On the other hand, if the
signal in any subsystem is reconstructed from the external signal acting on it, #sextðoÞ; the signals of
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Fig. 2. (a) Subsystems location in the beam and (b) GTFs and DTFs networks corresponding to Fig 2a.
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all the other subsystems, #sðoÞ; and by means of the direct transfer matrix, the procedure will
correspond to the GTDT method. The results of both approaches will be shown for the beam
example.

4. The global transfer functions

4.1. Force excitation

The inhomogeneous differential equation governing the bending vibrations of a finite elastic
beam for the case of a unit value force applied at a concentrated point x0 is given by (see, e.g.,
Refs. [16,17]).

B@4xuF þ rS@2t uF ¼ dðx � x0Þ; ð11Þ

where B ¼ EI is the bending stiffness, E is Young’s modulus and I is the second moment of area.
r is the beam density and S is the cross-sectional area. uF denotes the vertical displacement (see
Fig. 2a) while @4xuF and @2t uF ; respectively, denote the displacement fourth order space derivative
and the displacement second order time derivative. Performing the Fourier transform of (11) and
defining k ¼ ðrSo2=BÞ1=4 yields

@4x #UF � k4 #UF ¼ dðx � x0Þ: ð12Þ

The solution to (12) is commonly known as the time-independent Green function for the linear
differential equation at hand. The Green function is termed the exact Green function for a
particular problem if it also satisfies the boundary conditions associated with it (see, e.g.,
Ref. [18]). This Green function for the simply supported beam (force cross-receptance between x0

and x) is given by (see Appendix A):

#UF ðx;x0Þ � Gðx; x0Þ

¼
1

2k3

sinhðkðx0 � LÞÞ
sinhðkLÞ

sinhðkxÞ �
sinðkðx0 � LÞÞ

sinðkLÞ
sinðkxÞ; xox0;

sinhðkx0Þ
sinhðkLÞ

sinhðkðx � LÞÞ �
sinðkx0Þ
sinðkLÞ

sinðkðx � LÞÞ; x > x0:

8>><
>>: ð13Þ

Function (13) satisfies the symmetry relationship Gðx; x0Þ ¼ Gðx0; xÞ as well as the boundary
conditions of the problem. It can also be easily checked that (13) is the solution of the differential
Eq. (12).

On the other hand, the angle, #WF ðx; x0Þ; rotated at a point x due to a point excitation at x0 can
be straightforwardly obtained taking into account that #WF ðx; x0Þ ¼ @x

#UF ðx; x0Þ: It follows from
(13) that

#WF ðx; x0Þ ¼
1

2k2

sinhðkðx0 � LÞÞ
sinhðkLÞ

coshðkxÞ �
sinðkðx0 � LÞÞ

sinðkLÞ
cosðkxÞ; xox0;

sinhðkx0Þ
sinhðkLÞ

coshðkðx � LÞÞ �
sinðkx0Þ
sinðkLÞ

cosðkðx � LÞÞ; x > x0:

8>><
>>: ð14Þ
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4.2. Moment excitation

The displacement (in the frequency domain) at a point x when a concentrated moment
excitation acts at point x0 is given by the solution of the following inhomogeneous equation for
the beam

@4x #UM � k4 #UM ¼ @xdðx � x0Þ: ð15Þ

The solution to (15) for the simply supported beam (moment cross-receptance between x0 and
x) is given by (see Appendix B):

#UMðx;x0Þ

¼ �@x0
Gðx;x0Þ

¼
1

2k2

�
coshðkðx0 � LÞÞ

sinhðkLÞ
sinhðkxÞ þ

cosðkðx0 � LÞÞ
sinðkLÞ

sinðkxÞ; xox0;

�
coshðkx0Þ
sinhðkLÞ

sinhðkðx � LÞÞ þ
cosðkx0Þ
sinðkLÞ

sinðkðx � LÞÞ; x > x0:

8>><
>>: ð16Þ

The angle, #WMðx;x0Þ; rotated at a point x due to a concentrated moment excitation at x0 can be
obtained again taking into account that #WMðx;x0Þ ¼ @x

#UMðx;x0Þ: Then it follows from (16)
that

#WMðx;x0Þ ¼
1

2k

�
coshðkðx0 � LÞÞ

sinhðkLÞ
coshðkxÞ þ

cosðkðx0 � LÞÞ
sinðkLÞ

cosðkxÞ; xox0;

�
coshðkx0Þ
sinhðkLÞ

coshðkðx � LÞÞ þ
cosðkx0Þ
sinðkLÞ

cosðkðx � LÞÞ; x > x0:

8>><
>>: ð17Þ

4.3. The beam global transfer functions

From (13), (14), (16) and (17), it is possible to build all displacement–displacement,
displacement–angle and angle–displacement GTFs carrying out the appropriate ratios. It is
again remarked that dividing, for instance, force–displacement transfer functions in order to
obtain displacement–displacement transfer functions is only allowed because analytic expressions
are known for them and no statistics are involved.

On the other hand, observe that all functions #UF ðx; x0Þ; #WF ðx; x0Þ; #UMðx; x0Þ and #WMðx;x0Þ are
continuous at x ¼ x0; so the transfer functions are well defined at this point. Respectively,
denoting with superscripts > and o the solutions for x > x0 and xox0 and taking into account
that any of them can be used for the solution at x ¼ x0 due to continuity, the transfer functions
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are given by

#TG
11 ¼ 1; #TG

12 ¼
#U>

F ðx2; x1Þ
#UF ðx1; x1Þ

; #TG
13 ¼

#W>
F ðx2;x1Þ

#UF ðx1; x1Þ
; #TG

14 ¼
#U>

F ðx3;x1Þ
#UF ðx1;x1Þ

;

#TG
21 ¼

#Uo
F ðx1;x2Þ
#UF ðx2;x2Þ

; #TG
22 ¼ 1; #TG

23 ¼
#WF ðx2;x2Þ
#UF ðx2; x2Þ

; #TG
24 ¼

#U>
F ðx3;x2Þ
#UF ðx2;x2Þ

;

#TG
31 ¼

#Uo
Mðx1; x2Þ
#WMðx2;x2Þ

; #TG
32 ¼

#UMðx2; x2Þ
#WMðx2; x2Þ

; #TG
33 ¼ 1; #TG

34 ¼
#U>

Mðx3;x2Þ
#WMðx2;x2Þ

;

#TG
41 ¼

#Uo
F ðx1;x3Þ
#UF ðx3;x3Þ

; #TG
42 ¼

#Uo
F ðx2;x3Þ
#UF ðx3; x3Þ

; #TG
43 ¼

#Wo
F ðx2;x3Þ
#UF ðx3; x3Þ

; #TG
44 ¼ 1;

ð18Þ

where the following symmetries apply:

#UF ðx0; xÞ ¼ #UF ðx;x0Þ; #WMðx0; xÞ ¼ WMðx;x0Þ and � #WF ðx0;xÞ ¼ #UMðx; x0Þ;

The above considered GTFs (18) also represent velocity–velocity, velocity–angular velocity and
angular velocity–velocity transfer functions (read also acceleration–acceleration, acceleration–
angular acceleration and angular acceleration–acceleration) given that a cancelled factor
@n

t2ðioÞn with n ¼ 1;2, would appear both in the numerator and denominator of the GTFs in
(18).

5. The direct transfer functions

Section 2 showed that the DTFs can be obtained from the GTFs by means of Eq. (7). The main
purpose of this section is to see that #TD

14 ¼ #TD
41 ¼ 0 while #TD

ij a0 for i; j ¼ 1;y; 3 and for i; j ¼
2;y; 4: Taking into account Eq. (7) and relationships (8a) and (b), it will suffice to prove that

ð #TGÞ�1j14 ¼ ð #TGÞ�1j41 ¼ 0; ð19aÞ

ð #TGÞ�1jiioN; ð #TGÞ�1jija0 i; j ¼ 1;y; 3; i; j ¼ 2;y; 4 with iaj: ð19bÞ

As mentioned in Ref. [7], for the problem to be well defined it is first required that detð #TGÞa0:
This is the case for real physical systems that always have a certain amount of damping but it fails
at the eigenfrequencies of ideal non-damped systems. This can be seen in Fig. 3, where the
logarithm of detð #TGÞ is plotted against frequency. The determinant of #TG vanishes for
f1E32:5 Hz; f2E130:1 Hz and f3E292:6 Hz; which are the eigenfrequencies for the simply
supported beam in the [0, 500] Hz frequency range for the beam parameters in Table 2
(f ¼ o=2p). These eigenfrequencies can be obtained from the relations fn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=ðrSÞ
p

k2
n=2p; kn ¼ np=L 8n ¼ 1?N (see, e.g., Refs. [16,17]). The condition detð #TGÞa0

will be assumed from now on, i.e., the subsequent results will be valid for fafn:
Proving (19a) requires some lengthy but straightforward algebra. Only the main steps and an

intermediate result will be given here for the ð #TGÞ�1j14 ¼ 0 case, since ð #TGÞ�1j41 ¼ 0 has to be dealt
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in the same way. It has to be proven that

ð #TGÞ�1j14 ¼ detð #TGÞ #TG
12 ð #T

G
24 � #TG

23
#TG
34Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

þ #TG
13 ð #T

G
34 � #TG

32
#TG
24Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

B

þ #TG
14 ð #T

G
23

#TG
32 � 1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
C

2
64

3
75 ¼ 0: ð20Þ

As it has been assumed that detð #TGÞa0; it will suffice to prove that the bracketed term is equal
to zero. Substituting (13), (14), (16) and (17) into (18) and then into (20), this yields after some
calculations to

A ¼ sinhðkLÞsinðkLÞ


½cosðkx2Þsinhðkx2Þ � sinðkx2Þcoshðkx2Þ�

½sinhðkLÞsinðkx2Þsinhðkðx2 � LÞÞ � sinðkLÞsinhðkx2Þsinhðkðx2 � LÞÞ�


½sinhðkðx3 � LÞÞcosðkðx2 � LÞÞ � sinðkðx3 � LÞÞcoshðkðx2 � LÞÞ�

½sinðkLÞcoshðkx2Þcoshðkðx2 � LÞÞ � sinhðkLÞcosðkx2Þcosðkðx2 � LÞÞ�
; ð21Þ
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Table 2

Beam parameters

Description Variable Value

Beam length L 10m

Beam radius R 0.05m

Beam density r 7800 kgm�3

Young’s modulus E 21 1010 kgm�1 s�2

Fig. 3. Logarithm of detð #TGÞ vs. frequency. The determinant vanishes at the simply supported beam eigenfrequencies

f1; f2 and f3:
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B ¼
1

k
sinhðkLÞsinðkLÞ


½cosðkx2Þsinhðkx2Þ � sinðkx2Þcoshðkx2Þ�

½sinðkLÞcoshðkx2Þcosðkðx2 � LÞÞ � sinhðkLÞcosðkx2Þcosðkðx2 � LÞÞ�


½sinðkðx3 � LÞÞsinhðkðx2 � LÞÞ � sinhðkðx3 � LÞÞsinðkðx2 � LÞÞ�

½sinhðkLÞsinðkx2Þsinðkðx2 � LÞÞ � sinðkLÞsinhðkx2Þsinhðkðx2 � LÞÞ�
; ð22Þ

C ¼ sinhðkLÞsinðkLÞ


½sinðkx2Þcoshðkx2Þ � cosðkx2Þsinhðkx2Þ�

½sinðkLÞcoshðkx2Þcosðkðx2 � LÞÞ � sinhðkLÞcosðkx2Þcosðkðx2 � LÞÞ�


½sinðkðx2 � LÞÞcoshðkðx2 � LÞÞ � sinhðkðx2 � LÞÞcosðkðx2 � LÞÞ�

½sinðkLÞsinhðkx2Þsinhðkðx2 � LÞÞ � sinhðkLÞsinðkx2Þsinðkðx2 � LÞÞ�
: ð23Þ

In addition it follows from (18) that

#TG
12 ¼

sinðkLÞsinhðkðx2 � LÞÞsinhðkx1Þ � sinhðkLÞsinðkðx2 � LÞÞsinðkx1Þ
sinðkLÞsinhðkx1Þsinhðkðx1 � LÞÞ � sinhðkLÞsinðkx1Þsinðkðx1 � LÞÞ

; ð24Þ

#TG
13 ¼ k

sinðkLÞcoshðkðx2 � LÞÞsinhðkx1Þ � sinhðkLÞcosðkðx2 � LÞÞsinðkx1Þ
sinðkLÞsinhðkx1Þsinhðkðx1 � LÞÞ � sinhðkLÞsinðkx1Þsinðkðx1 � LÞÞ

; ð25Þ

#TG
14 ¼

sinðkLÞsinhðkðx3 � LÞÞsinhðkx1Þ � sinhðkLÞsinðkðx3 � LÞÞsinðkx1Þ
sinðkLÞsinhðkx1Þsinhðkðx1 � LÞÞ � sinhðkLÞsinðkx1Þsinðkðx1 � LÞÞ

: ð26Þ

Substituting (21)–(26) into (20) and carrying out some more calculations gives

#TG
12A þ #TG

13B þ #TG
14C ¼ 0 ð27Þ

and hence the expected result #TD
14 ¼ 0 is obtained.

Condition (19b) can be shown to be fulfilled arguing by contradiction, i.e., by assuming that these
transfer functions have a zero value and then finding an example that denies this assumption. The
following case will prove useful for this purpose. The values fx1 ¼ L=4;x2 ¼ 3L=8;x3 ¼ 7L=8g are
selected for the three beam points and use is made again of the beam parameters listed in Table 2.

The GTFs calculated from (18) for the above example and their corresponding DTFs, obtained
from Eq. (7) together with relationships (8a) and (b), are shown in Fig. 4. The values of
20 log10ðj #T

G;D
ij jÞ i; j ¼ 1;y; 4 are plotted for a frequency range of [0,500] Hz. It can be checked

that condition (19b) fulfils. That is, from Figs. 4a, d, m and p it can first be observed that while
20 log10ðj #T

G
ii jÞ ¼ 0 as #TG

ii ¼ 1; 8i ¼ 1;?; 4; the logarithm of #TD
ii ; 8i ¼ 1;?; 4; are non-zero and

well-defined functions. Moreover, it is clearly seen from Figs. 4b, c, e, f, h, i, k, l, n and o that
#TD

ij a0 i; j ¼ 1;?; 3; i; j ¼ 2;?; 4 with iaj: On the other hand, and as expected, #TD
41 and #TD

14

do not appear in Figs. 4g and j as they are zero and consequently their logarithm is at �N: On the
contrary #TG

41 and #TG
14 are well-defined functions with #TG

41;
#TG
14a0: It also has to be pointed out that

the peak and dip values in all graphs in Fig. 4 should go to infinity although this is not seen due to
resolution effects. The peaks of the GTFs in Fig. 4 occur at the antiresonances of the receptances
belonging to the denominators of the GTFs expression (18). Conversely, the dips take place at the
antiresonances of the cross-receptances in the numerator of the GTFs. This can be clearly seen in
Fig. 5, where the signal–signal GTF between x1 and x2; #TG

12; the receptance at x1; #UF ðx1; x1Þ and
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the cross-receptance between x1 and x2; #U>
F ðx2; x1Þ are plotted. While #UF ðx1;x1Þ and #U>

F ðx2;x1Þ have
their peaks at the simply supported beam eigenfrequencies, the peaks of #TG

12 correspond to the
antiresonances of #UF ðx1; x1Þ: It can also be seen that the dips of #TG

12 correspond to the antiresonances
of #U>

F ðx2; x1Þ: This is an expected result as #TG
12 ¼ #U>

F ðx2;x1Þ= #UF ðx1;x1Þ: On the other hand, it can be
observed that the peaks and dips of the DTFs in Fig. 4 do not necessarily coincide with those of the
GTFs. This is also an expected result: as the DTF between xi and xj represent the transfer function
when the remaining xk 8kai; j are blocked, the eigenfunctions, eigenfrequencies and antiresonances
of the beam with these additional restrictions will differ from the original ones. Consequently, the
DTF peak and dip values will not generally coincide with those from the corresponding GTFs.
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Fig. 4. GTFs and DTFs for the beam example. (a) #TD
11 continuous (—), #TG

11 dashed (– –); (b) #TD
12 continuous (—), #TG

12

dashed (– –); (c) #TD
21 continuous (—), #TG

21 dashed (– –); (d) #TD
22 continuous (—), #TG

22 dashed (– –); (e) #TD
31 continuous (—),

#TG
31 dashed (– –); (f) #TD

32 continuous (—), #TG
32 dashed (– –); (g) #TD

41 continuous (—), #TG
41 dashed (– –); (h) #TD

42 continuous

(—), #TG
42 dashed (– –); (i) #TD

13 continuous (—), #TG
13 dashed (– –); (j) #TD

14 continuous (—), #TG
14 dashed (– –); (k) #TD

23

continuous (—), #TG
23 dashed (– –); (l) #TD

24 continuous (—), #TG
24 dashed (– –); (m) #TD

33 continuous (—), #TG
33 dashed (– –); (n)

#TD
43 continuous (—), #TG

43 dashed (– –); (o) #TD
34 continuous (—), #TG

34 dashed (– –); (p) #TD
44 continuous (—), #TG

44 dashed (– –).
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6. Signal reconstruction

6.1. The FTF method reconstruction

From (13), (14), (16) and (17) the receptance matrix can be built. This matrix is
given by

#TGF
11 ¼ #UF ðx1; x1Þ; #TGF

12 ¼ #U>
F ðx2;x1Þ; #TGF

13 ¼ #W>
F ðx2;x1Þ; #TG

14 ¼ #U>
F ðx3; x1Þ;

#TGF
21 ¼ #Uo

F ðx1;x2Þ; #TGF
22 ¼ #UF ðx2;x2Þ; #TGF

23 ¼ #WF ðx2;x2Þ; #TGF
24 ¼ #U>

F ðx3; x2Þ;
#TGF
31 ¼ #Uo

Mðx1; x2Þ; #TGF
32 ¼ #UMðx2;x2Þ; #TGF

33 ¼ #WMðx2;x2Þ; #TGF
34 ¼ #U>

Mðx3; x2Þ;
#TGF
41 ¼ #Uo

F ðx1;x3Þ; #TGF
42 ¼ #Uo

F ðx2;x3Þ; #TGF
43 ¼ #Wo

F ðx2; x3Þ; #TGF
44 ¼ #UF ðx3; x3Þ:

: ð28Þ
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Fig. 4 (continued).
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In the case of a known operational external vector acting on the beam, #fextðoÞ; the operational
signal at any subsystem can be obtained from the following product:

#s ¼ TGFT #f ext: ð29Þ

Eq. (29) contains the key information of the FTF method as it allows one to obtain the
operational signal at any subsystem in terms of the contributions of the various forces acting on
the beam. That is, the signal at i; #siðoÞ; can be expressed as the summation of the various force
contributions TGF

ji f ext
j 8j ¼ 1;y; 4: In practical applications of the FTF method, measuring the

matrix receptance generally poses no difficulties. However, several problems are commonly found
when trying to obtain the forces acting on the system under the desired operational conditions.
Hence, much development of the FTF method has been precisely focused in finding ways of
obtaining these operational forces. However, no further information will given here concerning
these and other aspects of the FTF method as it is a widely implemented and well-known method.
Only an example of application to the beam case is given here for comparison with the GTDT
approach to the problem.

It is assumed for simplicity that the following frequency-independent and arbitrary chosen
operational external force vector is acting on the beam:

#fext ¼ ð3 10�2eiy1 ; 1 10�5eiy2 ; 1 10�1eiy3 ; 7 10�3eiy4ÞT ð30Þ

with y1 ¼ 0�; y2 ¼ 45�; y3 ¼ 115� and y4 ¼ 75�: The force contributions to the signal at any
subsystem can then be found from (29). The results are respectively given in Figs. 6a–d for
subsystems 1,2,3 and 4. The left-side figures represent 20 log10jT

GF
ji

#fext
j j; i.e., the squared moduli in

a logarithmic scale ((dB) ref 1m), while the right-side figures represent the respective phases in
degrees. It can be observed, as usual, that the peaks of the signal at any subsystem are located at
the beam eigenfrequencies. This is also true for the peaks of the various force contributions. On
the other hand, the main contributors to the overall signal at any subsystem are the force #fext

1 and
the torque #fext

3 : It can also be seen from the modulus plots in Fig. 6 that the force contributions do
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Fig. 5. Global Transfer Function #TG
12 dashed (– –), cross-receptance UF ðx2; x1Þ continuous (—), receptance UF ðx1; x1Þ

dotted (?).
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Fig. 6. Force contributions (modulus (dB) and phase (deg)): Overall signal at the ith subsystem, #si; continuous (—);

subsystem 1 force contribution to i; #TG
1i
#f ext
1 ; dashed bold (– –); subsystem 2 force contribution to i, #TG

2i
#f ext
2 ; dashed (– –);

subsystem 3 force contribution to i, #TG
3i
#f ext
3 ; dotted (?); subsystem 4 force contribution to i, #TG

4i
#f ext
4 ; dotted–dashed( � –).
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not generally surpass the overall signal value. This is true except for some frequency ranges that
change from figure to figure. For instance, in Fig. 6a the force contribution from subsystem 3
slightly exceeds the overall signal at subsystem 1 in the approximate range of [70 130] Hz. The
force contribution from subsystem 1 does so in the approximate range of [130 210] Hz. This can
be understood from Fig. 6b where it can be observed that these frequency ranges correspond to
changes in the relative phase between subsystem 1 and 3 force contributions yielding the
appropriate signal cancellations. Similar results can be found for the remaining Figs. 6b–d
although the phase effects remain of little influence for this particular example.

6.2. The GTDT method reconstruction

In the second step of the GTDT method, the signal at any subsystem is obtained by means of
Eq. (10). This equation gives the following result for subsystem 2:

#s2 ¼ #TD
12 #s1 þ #TD

32 #s3 þ #TD
42 #s4 þ #TD

22 #s
ext
2 ð31Þ

or the following one for subsystem 4:

#s4 ¼ #TD
14 #s1 þ #TD

24 #s2 þ #TD
34 #s3 þ #TD

44 #s
ext
4 ¼ #TD

24 #s2 þ #TD
34 #s3 þ #TD

44 #s
ext
4 ; ð32Þ

where in the last equality the before proven result #TD
14 ¼ 0 has been used. Analogous results are

obtained for the remaining subsystems 1 and 3. Thus, it can be seen that the overall operational
signal at any subsystem is given in terms of the contributions #TD

ji sj of all the remaining subsystems
j; with jai; and the contribution due to the external signal at i; #TD

ii sext
i :

By means of Eq. (29), the operational signal vector when the force vector (30) is acting on the
beam can be calculated. This vector will be frequency dependent and, although for the beam
example is obtained through (29) and (30), it will be a measured quantity in practical applications
of the method. Measuring the operational signal vector is usually much easier than measuring the
operational force vector.

Results for the beam example are, respectively, shown in Figs. 7a–d for subsystems 1,2,3 and 4.
Similar to Fig. 6, the left-side figures represent 20 log10jT

D
ji #sj j and 20 log10jT

D
ii #s

ext
i j; i.e., the squared

moduli in a logarithmic scale ((dB) ref 1m), while the right-side figures represent the respective
phases in degrees. Obviously, it can be first observed that the overall operational signal (modulus
and phase) for all subsystems in Figs. 7a–d are equal to those in Fig. 6a–d. However, the
factorization in terms of subsystem signal contributions is absolutely different from the
factorization based on subsystem force contributions. For example, while every plot in Fig. 6
has contributions from the four network subsystems, in Fig. 7a there is no contribution from
subsystem 4 because #TD

41 ¼ 0: Likewise there is no contribution from subsystem 1 in Fig. 7d
because #TD

14 ¼ 0: On the other hand, note that unlike the subsystem force contributions in Fig. 6,
the subsystem signal contributions do not have peaks at the beam eigenfrequencies only. This is a
straightforward consequence of the GTFs and DTFs shapes discussed in Section 5. Moreover, the
moduli of the various signal contributions at one subsystem often surpasses its overall signal level.
Only appropriate relations of the signal contribution relative phases allow the necessary
cancellations to obtain the observed overall signal. Yet this last result is not to be seen as a general
difference between the FTF method and the GTDT one, but as an outcome for this particular
problem at hand. It can also be seen in Figs. 7a–d that the relative influence of the signal
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Fig. 7. Signal contributions (modulus (dB) and phase (deg)): Overall signal at the ith subsystem, #si; continuous (—);

subsystem 1 signal contribution to i; #TD
1i #s1; dashed bold (– –); subsystem 2 signal contribution to i, #TD

2i #s2; dashed (– –);

subsystem 3 signal contribution to i, #TD
3i #s3; dotted (?); subsystem 4 signal contribution to i, #TD

4i #s4; dotted-dashed( � –).
(it is assumed in the notation that #TD

ji #sj is to be identified with #TD
ii #s

ext
i if i ¼ j).
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contributions for a given subsystem can change considerably with the frequency range.
Nevertheless, a detailed discussion on this point for every subsystem and frequency range will
not be carried out because the procedure is standard and will not shed extra light on the way the
GTDT method works.

6.2.1. Discussion
When the GTDT method is applied in practical situations, each subsystem, or small group of

subsystems is intended to represent the behaviour of a physical entity (see example in Section 2
and Fig. 1). This can be done in the low frequency range as well as in the mid-high frequency
range, the variability of these ranges usually depending on the particular problem at hand.
Intermediate situations generally require some previous numerical treatment to the application of
the second step of the method, such as the singular value decomposition technique. This allows
one to discriminate if Eq. (10) is needed for the signal reconstruction or if instead an energetic
analogue equation is to be used. Moreover, under the energetic assumption, the GTDT method
also brings the possibility to factorize any global path linking two subsystems, in terms of path
subgroups built from the union of various direct links among subsystems [10]. The factorization
by means of the DTFs and subsystem signal contributions allow prediction of how design
modifications on one subsystem may affect any other one. This can be done once the new DTFs
from the modified subsystem to the remaining ones are calculated and/or if some prediction on its
new signal level can be approximated (remember that only DTFs from directly linked subsystems
will have a non-zero value). Although in some cases this may seem quite a difficult task, it has
been found in practical implementations that even rough estimations of the modified DTFs and
subsystem signals can yield good results and predictions.

Finally, it is worthwhile to mention that a central point concerning the practical
implementation of the GTDT method (and indeed the FTF method) is the accurate selection
of subsystems. For instance, consider again the railway carriage example in Fig. 1. It would be
impossible to reconstruct the signal at M if some subsystem (e.g., L1) was omitted. Conversely, if
all subsystems were taken into account and the reconstructed signal at M was different from the
measured one, this could be indicative of some air leakage problem. The selection of subsystems in
the GTDT method also depends on the type of information one desires to obtain. If in the railway
carriage example the connection points information was of no interest, it would be possible to
work with a reduced five-dimensional network (microphone M, the lateral L1, the lateral L2, the
roof R and the floor F) instead of working with the general seven-dimensional one.

7. Conclusions

In this paper, the transmission of bending waves between three points x1ox2ox3 in a finite
simply supported elastic beam has been studied in the framework of the GTDT method of
transmission path analysis. The intention was to clarify how the method works, using this
example.

The displacements at x1; x2 and x3 have been, respectively, chosen as subsystems 1, 2 and 4 of a
four-dimensional discrete network, being the rotation at x2 the subsystem 3. Concerning the first
step of the method, it has been shown that the Direct Transfer Function, #TD

14; is zero for every
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frequency while the Global Transfer Function, #TG
14; is non-zero. This has shown that the DTF

matrix acts as a connectivity matrix because it quantifies the physically intuitive and well-known
result that no wave can be transmitted from x1 to x3 without inducing either a displacement or a
rotation at x2: The DTF connectivity matrix is not a measurable quantity but the paper has shown
how it can be calculated from measurable quantities such as the GTFs.

With regards to the second step of the method, it has been shown how the operational signal at
any subsystem can be recovered from the signal of all the other subsystems plus the external
excitation acting on it. This procedure allows detection of the subsystems to be modified in order
to reduce the signal at a given location and also allows prediction of how design modifications
may affect the signal level at any subsystem. Moreover, it avoids the necessity to measure
operational forces.
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Appendix A. Force receptance

There are several ways of finding the exact Green function associated to Eq. (12) in text, all of
them yielding more or less to the same amount of calculations. The wanted exact Green function
will be found here by explicit construction and will have the form

#UF ðx;x0Þ � Gðx; x0Þ ¼
Aoekx þ Boe�kx þ Coeikx þ Doe�ikx � Goðx;x0Þ; xox0;

A>ekx þ B>e�kx þ C>eikx þ D>e�ikx � G>ðx; x0Þ; x > x0;

(
ðA:1Þ

where Goðx;x0Þ and G>ðx; x0Þ are solutions of the homogeneous equation @4x #UF � k4 #UF ¼ 0;
respectively, at xox0 and x > x0: Ao;A>;Bo;B>;Co;C>;Do;D> are constants depending on x0

that have to be determined from the boundary conditions of the problem and from the continuity
requisites that the Green function has to fulfil.

The boundary conditions for the simply supported beam allow no displacement at the end
points. Moreover, no moments can be applied at these points. These conditions applied to (A.1)
read

Gð0;x0Þ ¼ 0; No displacement at x ¼ 0; ðA:2aÞ

GðL;x0Þ ¼ 0; No displacement at x ¼ L; ðA:2bÞ

@2xGð0;x0Þ ¼ 0; No moment at x ¼ 0; ðA:2cÞ

@2xGðL;x0Þ ¼ 0; No moment at x ¼ L: ðA:2dÞ

Requiring the Green function to satisfy (A.2a)–(A.2d) the following relationships among the
unknown constants can be easily found:

Ao ¼ �Bo; Co ¼ �Do; A> ¼ �B>e�2kL; C> ¼ �D>e�2ikL: ðA:3Þ
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Substituting (A.3) into (A.1), and renaming the constants where appropriate, yields

#UF ðx;x0Þ � Gðx;x0Þ ¼
Ao sinhðkxÞ þ Co sinðkxÞ � Goðx; x0Þ; xox0;

A> sinhðkðx � LÞÞ þ C> sinðkðx � LÞÞ � G>ðx; x0Þ; x > x0;

(
ðA:4Þ

The following notation will be adopted:

Gwðx8
0 ;x0Þ � lim

x-x0

xwx0

Gðx; x0Þ ¼ Gwðx0; x0Þ;

@i
xGwðx8

0 ;x0Þ � lim
x-x0

xwx0

@i
xGðx; x0Þ ¼ @i

xGwðx0; x0Þ: ðA:5Þ

In order to find the remaining constants Ao;A>;Co and C> function (A.4) is required to
comply with the following continuity conditions:

G>ðxþ
0 ;x0Þ � Goðx�

0 ; x0Þ ¼ 0; Function0s continuity at x ¼ x0; ðA:6aÞ

@xG>ðxþ
0 ;x0Þ � @xGoðx�

0 ; x0Þ ¼ 0; First derivative continuity at x ¼ x0; ðA:6bÞ

@2xG>ðxþ
0 ;x0Þ � @2xGoðx�

0 ;x0Þ ¼ 0; Second derivative continuity at x ¼ x0; ðA:6cÞ

@3xG>ðxþ
0 ; x0Þ � @3xG>ðx�

0 ;x0Þ ¼ �1; Third derivative discontinuity at x ¼ x0: ðA:6dÞ

Note that condition (A.6d) is responsible for the appearance of a delta function when the fourth
derivative is carried out. Requiring (A.4) to satisfy (A.6a)–(A.6d) and taking into account (A.5)
the following system of equations can be derived:

sinhðkx0Þ sinðkx0Þ �sinhðkðx0 � LÞÞ �sinðkðx0 � LÞÞ

coshðkx0Þ cosðkx0Þ �coshðkðx0 � LÞÞ �cosðkðx0 � LÞÞ

sinhðkx0Þ �sinðkx0Þ �sinhðkðx0 � LÞÞ sinðkðx0 � LÞÞ

coshðkx0Þ �cosðkx0Þ �coshðkðx0 � LÞÞ cosðkðx0 � LÞÞ

2
6664

3
7775

Ao

Co

A>

C>

2
6664

3
7775 ¼

0

0

0

�1=k3

2
6664

3
7775 ðA:7Þ

the solution of which is given by

Ao ¼
1

2k3

sinhðkðx0 � LÞÞ
sinhðkLÞ

; Co ¼ �
1

2k3

sinðkðx0 � LÞÞ
sinðkLÞ

;

A> ¼
1

2k3

sinhðkx0Þ
sinhðkLÞ

; C> ¼ �
1

2k3

sinðkx0Þ
sinðkLÞ

:

ðA:8Þ

Substitution of (A.8) into (A.4) finally yields Eq. (13) in text.

Appendix B. Moment receptance

In order to find the solution to Eq. (15) in text, the following well-known result will be used
(see, e.g., Ref. [18]): Given a linear partial-differential operator Lx; the solution jðxÞ to the
inhomogeneous equation

LxjðxÞ ¼ QðxÞ; xAO ðB:1Þ
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can be found once the solution (the Green function) to (B.1) with a delta-function inhomogeneity
is known. The solution is given by

jðxÞ ¼
Z
O

Gðx; yÞQðyÞdy þ jhðxÞ; ðB:2Þ

where Gðx; yÞ is the solution of

LxGðx; yÞ ¼ dðx � yÞ ðB:3Þ

and jhðxÞ is the solution of the associated homogeneous problem LxjðxÞ ¼ 0: In the case of
Gðx; yÞ being the exact Green equation of the problem, jhðxÞ vanishes and the solution is only
given by the integral term in Eq. (B.2).

Applying this result to Eq. (15) in text gives

#UM ¼
Z
O

Gðx; yÞ@ydðy � x0Þ dy

¼ �
Z
O
@yGðx; yÞdðy � x0Þ dy þ

Z
@O

Gðx; yÞdðy � x0Þ dy

¼ �@yGðx; yÞjx
y¼x0

þ Gðx; x0Þj@O ¼ �@yGðx; yÞjx
y¼x0

� �@x0
Gðx;x0Þ; ðB:4Þ

where the boundary term has vanished as the Green function fulfils the boundary conditions
(A.2a) and (A.2b). Note that the above operations can be performed because the order of
derivability of the Green function at hand is higher than the order of the derivative of the delta-
function inhomogeneity appearing in Eq. (15).

Applying reasoning (B.1)–(B.4) into (15) and taking into account that the Green function is
given by Eq. (13), finally results in Eq. (16) in text.
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